Around Erdős-Lovász problem on colorings of non-uniform hypergraphs
نویسنده
چکیده
The talk deals with combinatorial problems concerning colorings of non-uniform hyper-graphs. Let H = (V, E) be a hypergraph with minimum edge-cardinality n. We show that if H is a simple hypergraph (i.e. every two distinct edges have at most one common vertex) and e∈E r 1−|e| c √ n, for some absolute constant c > 0, then H is r-colorable. We also obtain a stronger result for triangle-free simple hypergraphs by proving that if H is a simple triangle-free hypergraph and e∈E r 1−|e| c · n, for some absolute constant c > 0, then H is r-colorable.
منابع مشابه
Greedy colorings of uniform hypergraphs
We give a very short proof of an Erdős conjecture that the number of edges in a non-2-colorable n-uniform hypergraph is at least f(n)2, where f(n) goes to infinity. Originally it was solved by József Beck in 1977, showing that f(n) at least c log n. With an ingenious recoloring idea he later proved that f(n) ≥ cn. Here we prove a weaker bound on f(n), namely f(n) ≥ cn. Instead of recoloring a r...
متن کاملColorings of hypergraphs with large number of colors
The paper deals with the well-known problem of Erdős and Hajnal concerning colorings of uniform hypergraphs and some related questions. Let m(n, r) denote the minimum possible number of edges in an n-uniform non-r-colorable hypergraph. We show that for r > n, c1 n lnn m(n, r) rn C1 n lnn, where c1, C1 > 0 are some absolute constants.
متن کاملOn a problem of Erdős and Lovász on coloring non-uniform hypergraphs
Let f(r) = minH P F∈E(H) 1 2|F | , where H ranges over all 3-chromatic hypergraphs with minimum edge cardinality r. Erdős-Lovász (1975) conjectured f(r) → ∞ as r → ∞. This conjecture was proved by Beck in 1978. Here we show a new proof for this conjecture with a better lower bound: f(r) ≥ ( 1 16 − o(1)) ln r ln ln r .
متن کاملHypergraphs with many Kneser colorings
For fixed positive integers r, k and ` with 1 ≤ ` < r and an r-uniform hypergraph H, let κ(H, k, `) denote the number of k-colorings of the set of hyperedges of H for which any two hyperedges in the same color class intersect in at least ` elements. Consider the function KC(n, r, k, `) = maxH∈Hn κ(H, k, `), where the maximum runs over the family Hn of all r-uniform hypergraphs on n vertices. In...
متن کاملConstructions of sparse uniform hypergraphs with high chromatic number
Arandomconstruction gives newexamples of simple hypergraphswith high chromatic number that have few edges and/or lowmaximumdegree. In particular, for every integers k ≥ 2, r ≥ 2, and g ≥ 3, there exist r-uniform non-k-colorable hypergraphs of girth at least g with maximum degree at most r kr−1 ln k . This is only 4r2 ln k times greater than the lower bound by Erdős and Lovász (ColloquiaMath Soc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Discrete Mathematics
دوره 338 شماره
صفحات -
تاریخ انتشار 2015